

A Convenient Allenoate-Based Synthesis of 2-Quinolin-2-yl Malonates and β -Ketoesters

Philipp Selig*,† and William Raven[‡]

Supporting Information

ABSTRACT: N-Protected o-aminobenzaldehydes smoothly react with α,γ -dialkylallenoates under Brønsted basic conditions to yield 2,3-disubstituted quinolines. This three-step reaction cascade of Michael addition, aldol condensation, and $1,3-N \rightarrow C$ rearrangement uses the complete protecting group as a building block in a highly efficient C,C-bond formation of a new all-carbon quaternary center. Carbamate protected

substrates (N-Boc, N-Cbz, N-Alloc) thus give 2-quinolin-2-yl-malonates, while amide protected substrates (N-Ac, N-Bz) afford 2quinolin-2-yl- β -ketoesters in high yields.

The quinoline ring system is an important heteroaromatic moiety which is present in a wide variety of bioactive and pharmaceutically useful substances,1 such as the Cinchona alkaloids, the cytotoxic alkaloid camptothecin, quinoline antibiotics,² or the new antituberculosis drug Bedaquiline.³ Of the many classical syntheses of quinolines, the Friedländer condensation between an aromatic 2-amino carbonyl and an active methylene compound is still the method of choice for the synthesis of quinolines substituted on the pyridine ring,4 and improvements of this methodology continue to be developed up to this day. While a number of related quinoline syntheses have been developed by variation of the amino component relatively early on (e.g., the Niementowski and Pfitzinger syntheses),6 little work has been devoted to variation of the active methylene compound. Today, alkynes represent the only major alternative to enolizable carbonyls.

Following up on our work on $\alpha_i \gamma$ -dialkylallenoate esters as versatile building blocks in the synthesis of heterocycles, we became interested in the possible application of allenoates for quinoline synthesis. Allenes, just like isomeric alkynes, can formally be considered as dehydrated carbonyl compounds. α Allenic esters exhibit strong electrophilicity on the central β carbon and are latent nucleophiles at the α - and γ -position. A Friedländer-type quinoline synthesis with o-aminobenzaldehyde and allenoates would therefore proceed as an aza-Michael addition-aldol condensation sequence. 10 A related allenoatebased approach to the chromane skeleton with o-hydroxybenzaldehyde has in fact already been investigated in detail.¹¹

We began our investigations with the reaction of free oaminobenzaldehyde (1) and α, γ -dimethylallenoate 2, but to our disappointment, no reaction could be observed under a variety of conditions. 12 N-Boc protected o-aminobenzaldehyde (1a), on the other hand, smoothly reacted with allenoate 2 under Brønsted basic conditions at rt to give two different quinoline products 3 and 4a in various proportions (see Scheme 1). The

formation of these two products can be rationalized as follows: N-Boc protection increases the acidity of the NH-proton sufficiently to allow for deprotonation by K₂CO₃ and formation of a highly nucleophilic amide anion. Aza-Michael addition of this anion to allenoate 2 results in intermediate A, which selectively cyclizes at the γ -position to give the bicyclic intermediate B. Intermediate B itself was too unstable to be isolated after aqueous workup and column chromatography. N-Boc deprotection and aromatization/tautomerization quickly result in the formation of 2-quinolin-2-yl-propanoate 3. While the formation of 3 can thus be explained quite intuitively, the formation of malonic ester 4a was much more surprising at first. Here, the former N-Boc protecting group has obviously been transferred to the adjacent nonaromatic position with the concomitant formation of a new all-carbon quaternary center. The N-Boc group thus not only activates the aminoaldehyde substrate for nucleophilic attack but also plays a rather unusual role as a building block in C₂C-bond formation. This protecting group transfer can be explained easily; however, if intermediate B is considered in its mesomeric form B'. Aromatization converts the quinolinyl ring into a cationic leaving group, thus activating the Boc-group for nucleophilic attack, and simultaneously provides a stabilized anionic carbon center in direct proximity. Despite the usually unreactive nature of the N-Boc group, this special situation favors an efficient 1,3-N \rightarrow C acyl transfer to product 4a. 13

The relative amounts of the two isolable products 3 and 4a were strongly dependent on the reaction conditions. Heating of the reaction mixture both drastically reduced reaction times and increased the selectivity for the formation of rearranged product 4a. After a short optimization (see Supporting Information), we identified DMSO as the optimal solvent, freshly ground K₂CO₃

Received: August 29, 2014 Published: September 12, 2014

[†]Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

[‡]Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany

Organic Letters Letter

Scheme 1. Overview of the Allenoate-Based Friedländer Quinoline Synthesis

as a cheap and efficient Brønsted base, and 100 °C as the optimum temperature, which allowed for the isolation of **4a** in 72% yield (Table 1, entry 1).

We next investigated a number of readily available α, γ -dialkylallenoates 5–10 in the reaction with 1a and were pleased to find that all expected *tert*-butyl ethyl malonates 11a–16a were formed in good yields without any further optimization (Table 1, entries 2–7). α -Me, α - n Pr, α -Bn, γ -Me, γ - n Bu, γ -Bn, branched γ - i Pr, and even γ - t Bu substituents on the allenoate

Table 1. Synthesis of 2-Quinolin-2-yl-malonates from Carbamate Protected o-Aminobenzaldehydes^a

CHO R
$$^{\alpha}$$
 CO₂Et 1.0 equiv K₂CO₃ (DMSO) (DMSO) 100 °C N $^{\alpha}$ R $^{\alpha}$ OR 1a-1c 2, 5-10 4, 11-16 (a-c) entry substrates PG R $^{\alpha}$ R $^{\gamma}$ R product yield [%] 1 1a 2 Boc Me Me $^{\prime}$ Bu 4a 72

	-,				., (,				
entry	subst	trates	PG	R^{α}	R^{γ}	R	product	yield $[\%]^b$	
1	1a	2	Boc	Me	Me	^t Bu	4a	72	
2	1a	5	Boc	$^{n}\mathrm{Pr}$	Me	^t Bu	11a	71	
3	1a	6	Boc	Bn	Me	^t Bu	12a	68	
4	1a	7	Boc	Me	"Bu	^t Bu	13a	83	
5	1a	8	Boc	Me	Bn	^t Bu	14a	79	
6	1a	9	Boc	Me	i Pr	^t Bu	15a	78	
7	1a	10	Boc	Me	${}^t\mathrm{Bu}$	^t Bu	16a	69	
8 ^c	1b	2	Cbz	Me	Me	Bn	4b	85	
9	1b	5	Cbz	"Pr	Me	Bn	11b	97	
10	1b	6	Cbz	Bn	Me	Bn	12b	82	
11	1b	7	Cbz	Me	"Bu	Bn	13b	88^d	
12	1b	8	Cbz	Me	Bn	Bn	14b	92	
13	1b	9	Cbz	Me	i Pr	Bu	15b	60	
14	1b	10	Cbz	Me	^t Bu	Bn	16b	59	
15	1c	2	Alloc	Me	Me	allyl	4c	88	
16	1c	5	Alloc	$^{n}\mathrm{Pr}$	Me	allyl	11c	92	
17	1c	6	Alloc	Bn	Me	allyl	12c	92	
18	1c	7	Alloc	Me	"Bu	allyl	13c	87	
19	1c	8	Alloc	Me	Bn	allyl	14c	94	
20	1c	9	Alloc	Me	ⁱ Pr	,		61	
21	1c	10	Alloc	Me	^t Bu	allyl	16c	68	

^aReactions were carried out on a 1.0 mmol (1a) or 0.5 mmol (1b/c) scale, using 1.25 equiv of allenoate and 1.0 equiv of K_2CO_3 . ^bYields of isolated products. ^cReaction with 0.36 mmol of 1b. ^d94% (1.97 g) 13b on a 5.0 mmol scale.

were all well tolerated. Branched substituents ^{*i*}Pr and ^{*t*}Bu increased the required reaction times from a few minutes to several hours, but even with the extremely bulky ^{*t*}Bu-allenoate **10**, product **16a** bearing two directly adjacent quaternary centers on the quinoline ring, was still available in 69% yield.

N-Cbz and N-Alloc protected o-aminobenzaldehyde (1b, 1c) reacted in the very same fashion and gave benzyl ethyl malonates 4b, 11b–16b (Table 1, entries 8–14) as well as allyl ethyl malonates 4c, 11c–16c (Table 1, entries 15–21) in good to excellent yields. The reactions were very clean, and only occasionally could small amounts of protecting group free quinolines (cf. 3) be observed as side products. All three widely used carbamate protecting groups N-Boc, N-Cbz, and N-Alloc were thus readily employed as O-protected malonate building blocks.

In light of these results, we became interested if other—noncarbamate—N-protecting groups were suitable for the 1,3- $N \rightarrow C$ rearrangement as well, and N-acetyl and N-benzoyl protected o-aminobenzaldehyde (1d, 1e) were chosen as additional substrates (see Table 2). Again, the reactions proceeded very smoothly. Transfer of the N-Ac protecting group from 1d gave rise to aliphatic β -ketoesters 4d, 11d–16d (Table 2, entries 1–7), while transfer of the N-Bz protecting group from 1e afforded aromatic β -ketoesters 4e, 11e–16e (Table 2, entries 8–14) in high yields. Only the most unreactive 'Bu allenoate 10 gave comparably low yields of β -ketoesters 16d/e. As amides 1d/e are more labile to basic hydrolysis than carbamates 1a–c, prolonged reaction times >1 h lead to N-deprotection and deactivation of the substrates.

The reactions were readily scalable under the same conditions to give excellent yields and gram-amounts of products 13b/e (Tables 1 and 2, entry 11). Our newly found allenoate based quinoline synthesis thus offers a convenient alternative to the classical Friedländer methodology, especially for the formation of sterically congested products which are difficult to access with conventional synthetic methods, and often require special, prefunctionalized substrates or multistep syntheses. ¹⁴

The structure of the rearranged products was unambiguously confirmed by X-ray crystal diffraction of crystalline β -ketoester **15e** (Figure 1).

The now easy availability of quinolinyl malonates and β -ketoesters prompted us to explore the potential for further functional group manipulations in these products (Figure 2). Benzyl malonates 13b and 16b were readily converted to their corresponding quinolinyl-2-propanoates 17 and 18 in excellent yields by hydrogenolysis and spontaneous decarboxylation. Despite this known disposition for decarboxylation, ^{14c} manip-

Organic Letters Letter

Table 2. Synthesis of 2-Quinolin-2-yl-β-ketoesters from Acetyl and Benzoyl Protected o-Aminobenzaldehydes^a

CHO
$$R^{\alpha}$$
 CO_2Et 1.0 equiv K_2CO_3 R^{γ} CO_2Et 1.0 equiv K_2CO_3 R^{γ} CO_2Et R^{α} R^{α}

•		•					,	•
entry	y substrates		PG	R^{α}	R^{γ}	R	product	yield $[\%]^b$
1	1d	2	Ac	Me	Me	Me	4d	88
2	1d	5	Ac	$^{n}\mathrm{Pr}$	Me	Me	11d	91
3	1d	6	Ac	Bn	Me	Me	12d	79
4	1d	7	Ac	Me	"Bu	Me	13d	84
5	1d	8	Ac	Me	Bn	Me	14d	86
6	1d	9	Ac	Me	$^{i}\mathrm{Pr}$	Me	15d	69
7	1d	10	Ac	Me	^t Bu	Me	16d	21
8	1e	2	Bz	Me	Me	Ph	4e	96
9	1e	5	Bz	"Pr	Me	Ph	11e	97
10	1e	6	Bz	Bn	Me	Ph	12e	83
11	1e	7	Bz	Me	"Bu	Ph	13e	90 ^c
12	1e	8	Bz	Me	Bn	Ph	14e	95
13	1e	9	Bz	Me	i Pr	Ph	15e	90
14	1e	10	Bz	Me	^t Bu	Ph	16e	21

"Reactions were carried out on a 0.5 mmol scale, using 1.25 equiv of allenoate and 1.0 equiv of K_2CO_3 . "Yields of isolated products." (1.90 g) 13e on a 5.0 mmol scale.

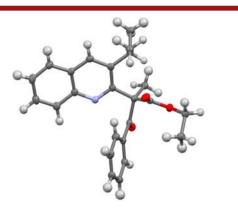


Figure 1. X-ray crystal structure of β-ketoester 15e. Ellipsoids at 50% probability. ¹⁵

$$R^{\gamma}$$
 $CO_{2}Et$
 CH_{3}
 $CO_{2}Et$
 CH_{3}
 $CO_{2}Et$
 CH_{3}
 $CO_{2}Et$
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 CH_{3}
 $CO_{2}Et$
 CH_{3}
 C

Figure 2. Derivatization of quinoline products: a From 13b/16b with H_2 , Pd/C; b From 4d with NaBH₄; c From 13b with LiAlH₄; d From 4a with NBS, AIBN. All yields are of isolated products and are unoptimized.

ulations of the malonate or β -ketoester moiety which keep the quaternary center intact were also possible. Reduction of β -ketoester 4d with NaBH₄ afforded 51% of diastereomerically pure alcohol 19, and LiAlH₄ reduction of malonate 13b gave the 1,3-diol 20 in 40% unoptimized yield. Finally, we could show that 3-Me substituted products such as 4a were easily elaborated for further reactions on the benzylic position by straightforward radical bromination with NBS/AIBN.

In conclusion, we developed a quick and convenient method for the synthesis of densely substituted 2-quinolin-2-yl malonates and β -ketoesters from N-protected σ -aminobenzal-dehydes and α,γ -dialkylallenoates. The reaction features a highly effective, aromatization-initiated 1,3-N \rightarrow C rearrangement of carbamate or amide protecting groups with the formation of a new quaternary carbon center. The reaction succeeds with high yields and under very simple conditions with Boc, Cbz, Alloc, Ac, and Bz protecting groups. Investigations regarding the functional group transfer of other N-protecting groups are currently ongoing in our laboratory.

ASSOCIATED CONTENT

S Supporting Information

Syntheses of starting materials, full synthetic procedures, optimization data, details on X-ray crystal analysis, full analytical data and copies of ¹H and ¹³C NMR spectra of quinoline products and derivatives. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Philipp.Selig@rwth-aachen.de.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Fonds der Chemischen Industrie (FCI) for financial support (Liebig-Scholarship to P.S.). Special thanks go to Prof. Dr. D. Enders, Institute of Organic Chemistry, RWTH Aachen University, for the generous provision of laboratory space and chemicals.

REFERENCES

- (1) (a) Musiol, R.; Magdziarz, T.; Kurczyk, A. In Science against microbial pathogens: Communicating current research and technological advances; Méndez-Villas, A., Ed.; Formatex: Badajoz, 2011; Vol. 1, pp 72–83. (b) Afzal, O.; Kumar, S.; Haider, M. R.; Ali, M. R.; Kumar, R.; Jaggi, M.; Bawa, S. Eur. J. Med. Chem. 2014, DOI: 10.1016/j.ejmech.2014.07.044.
 - (2) Tatsuta, K.; Tamura, T. J. Antobiotics 2000, 53, 418-421.
- (3) (a) Matteelli, A.; Carvalho, A. C. C.; Dooley, K. E.; Kritski, A. Future Microbiol. 2010, 5, 849–858. (b) Diacon, A. H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.; Bogoshi, M.; Churchyard, G.; Venter, A.; Allen, J.; Palomino, J. C.; De Marez, T.; van Heeswijk, R. P. G.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Neeley, D. F. M. New Engl. J. Med. 2009, 360, 2397–2405.
- (4) (a) Friedländer, P. Chem. Ber. 1882, 15, 2572–2575. (b) Muchowski, J. M.; Maddox, M. L. Can. J. Chem. 2004, 82, 461–478.
- (5) Review: (a) Marco-Contelles, J.; Pérez-Mayoral, E.; Samadi, A.; Carreiras, M. d. C.; Soriano, E. *Chem. Rev.* **2009**, *109*, 2652–2671. Recent examples: (b) Bandyopadhyay, P.; Prasad, G. K.; Sathe, M.; Sharma, P.; Kumar, A.; Kaushik, M. P. *RSC Adv.* **2014**, *4*, 6638–6645.

Organic Letters Letter

(c) Bañón-Caballero, A.; Guillena, G.; Nájera, C. J. Org. Chem. 2013, 78, 5349–5356. (d) Shen, Q.; Wang, L.; Yu, J.; Liu, M.; Qiu, J.; Fang, L.; Guo, F.; Tang, J. Synthesis 2012, 44, 389–392. (e) Wu, J.; Xia, H.-G.; Gao, K. Org. Biomol. Chem. 2006, 4, 126–129.

- (6) Reviews: (a) Manske, R. H. Chem. Rev. **1942**, 30, 113–144. (b) Bergstrom, F. W. Chem. Rev. **1944**, 35, 77–277.
- (7) (a) Khong, S.; Kwon, O. J. Org. Chem. 2012, 77, 8257–8267.
- (b) Patil, N. T.; Raut, V. S. J. Org. Chem. 2010, 75, 6961-6964.
- (c) Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. Synlett 2010, 3104–3112.
- (8) (a) Selig, P.; Turočkin, A.; Raven, W. Chem. Commun. 2013, 49, 2930–2932. (b) Selig, P.; Turočkin, A.; Raven, W. Synlett 2013, 24, 2535–2539. (c) Selig, P.; Turočkin, A.; Raven, W. Adv. Synth. Catal. 2013, 355, 297–302.
- (9) Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387–1390.
- (10) (a) Wagner, A. M.; Knezevic, C. E.; Wall, J. L.; Sun, V. L.; Buss, J. A.; Allen, L. T.; Wenzel, A. G. *Tetrahedron Lett.* **2012**, *53*, 833–836. (b) Yamazaki, S.; Takebayashi, M.; Miyazaki, K. *J. Org. Chem.* **2010**, 75, 1188–1196. (c) Makino, K.; Hara, O.; Takiguchi, Y.; Katano, T.; Asakawa, Y.; Hatano, K.; Hamada, Y. *Tetrahedron Lett.* **2003**, *44*, 8925–8929.
- (11) (a) Sun, Y.-W.; Guan, X.-Y.; Shi, M. Org. Lett. **2010**, 12, 5664–5667. (b) Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L.; Shi, M. Chem.—Eur. J. **2007**, 13, 3701–3706. (c) Shi, M.; Dai, L.-Z.; Shi, Y.-L.; Zhao, G.-L. Adv. Synth. Catal. **2006**, 348, 967–972. (d) Zhao, G.-L.; Shi, Y.-L.; Shi, M. Org. Lett. **2005**, 7, 4527–4530.
- (12) Free *o*-aminobenzaldehyde has been reported to react with highly activated allene-1,3-dicarboxylic esters only: (a) Tamara, Y.; Tsugoshi, T.; Mohri, S.-i.; Kita, Y. *J. Org. Chem.* **1985**, *50*, 1542–1544. (b) Nixon, N. S.; Scheinmann, F.; Suschitzky, J. L. *Tetrahedron Lett.* **1983**, *24*, 597–600.
- (13) 1,3-N → C shifts have been reported previously for acyl groups, but not for carbamate groups: (a) Hara, O.; Ito, M.; Hamada, Y. *Tetrahedron Lett.* **1998**, 39, 5537–5540. (b) Trapani, G.; Reho, A.; Latrofa, A.; Marlacchi, F.; Liso, G. *J. Chem. Res.* (S) **1986**, 96–97. (c) Liso, G.; Trapani, G.; Reho, A.; Latrofa, A. *Tetrahedron Lett.* **1981**, 22, 1641–1644. (d) Akasaki, Y.; Ohno, A. *J. Am. Chem. Soc.* **1974**, 96, 1957–1959.
- (14) (a) Karataş, B.; Aumann, R. Organometallics **2010**, 29, 801–805. (b) Suginome, M.; Fukuda, T.; Ito, Y. Org. Lett. **1999**, 1, 1977–1979. (c) Baty, J. D.; Jones, G.; Moore, C. J. Org. Chem. **1969**, 34, 3295–3302.
- (15) (a) CCDC 1021178 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif. (b) Spek, A. L. Acta Crystallogr. 2009, D65, 148.